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1. INTRODUCTION

Consider a distribution of the continuous type with the
density function f ( x ; u ) ,  where a is a parameter . The values

obtained in N independent drawings from the distri-
bution , which will be called the observations, are independent

random variables, all of which have the sanie density function
f(x;cc). Each particular sample XN will be represented by a
definite point XN~ 

(x,,...,xN) in the sample space R~ of
the variables x1,...,t~. The probability element of the joint
distribution of the observations is

— f(xi;u)...t(xw;u)dxi...dlj (1)

which is equal to the probability that the sample point X~
falls within the N—dimensional interval dx1...dx~.

The function L is known as the likelihood function of
the 8ample J~~.

The classical method of estimating the unknown parameter
a by means of the observations consists in using a unique
function a..(x,,...,x~) of the observations as an estimateof a. The merit of this estimator is appraised by its
variance. Under certain general conditions, the smallest pos-
sible value of this variance Is given by

— l/N
J
”(~~Ln f(x;uY~~x)

2.f(x;u)dx (2)

The ratio between this minimum value and the actual van —
anoe of is called the efficiency of 2.

The procedure of estimating an unknown parameter a
of a given distribution function by means of the observations
will now be considered from a somewhat different aspect, viz.
as a proc’ess of deciding between several possible values of a.

Any procedure of selecting one of a set of competing hypo-
theses consists in choosing a unique function of the observa-
tions, which will be called the selector, and a set of accep-
tance regions, one for each of the hypotheses. The merit of

—1.-
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the selector will be appraised by means of a new oonoept,
called the reliability of the selector, as will be demonstra—
-ted in the following.

2. THE RELIABILITY OF A SELECTOR

2.1 A Finite Number of Hypotheses

Any selector T(t1,...,t ) is a uniqu, function of k
test values. Each parti~ular value of T will be repro—
sented by a definite point in the k—dimensional space A of
the test values t

l~~I • • ~~
tk• If k— i the selector is said

to be univaniata, if k’.2, bivaniate, eto.

Consider the case that we have to select one of j hypo-
theses H1,...,Hj by means of the selector T. If Hi is
the true hypothosis , then T has a particular density funo-
tion , which will be denoted by fi(ti,...,tk). We now have
to choose j acooptanoe regions A1,..., Aj ,  which are
parts of the space A without common points. We have

o (3)

If the sign of inequality holds, then the non—empty region
(A—EA 4) will be the acoeptanoe region of the hypothesis that
none ot the j hypotheses is true.

The selection rule now becomes, that, if the particular
value of T, the test point , falls within Ai , then the Iiy—
pothesis Hi is accepted and all the other hypotheses rejec-
ted.

Let us now , for a moment, suppose that Hi is the true
hypothesis, then we will state this fact, that is, we are
making a correct select ion, •aoh time we obtain a test point

which falls within the region Ai . The probabi-
lity of this event, denoted by PHi, is given by

PHI. — ~
tfj(ti,...,tk)dti...dtk

It is obvious that this probability depends on the choice
of At. If we, for instance, put A — A, then PHi— i , but
then all other regions and. probabiii~Cies Wil]. be equal to zero.

—2—
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The proper choice of the acceptance regions follows certain
rules , which are indicated. below.

Let us now suppose that we can give preference to none
of the competing hypotbeses. If we then repeat the selec-
tion procedure many times , then it is reasonable to assume
that each hypothesis will have the probability l/j of oc-
curring, and the probability of selecting the true hypothe-
sis will be given by the arithmetic mean of all probabilities
PHi, that is,

PS — EPBi/ j (5)

Also PS depends on the ohoice of the aooeptanoe re-
gions, and it is required to define the particular set Ai,
which maximizes PS. This problem will now be examined. for
several different alternatives.

2.1.1 trriivariate _~oleotors

These selectors have one—dimensional density functions
f~(t). For the simple case of two hypotheses only (3—2)

let f1(t) and f2(t) be represented. by the graphs in
Pig.l .

If we now arbitrarily choose as the critical point to,
which separates the regions A1 (— ~~,t ) and A2~~(t ,~~),then from (4 C C

PHi — /f1(t)dt P112 - fr2(t)dt Ps~~(PHi+Pu2)/2 (6)

Those formulas are valid for any choice of acceptance
regions, but a moment’s reflection will show that PS will
be maximized, it, but only if , we take as the critical point
O12~ 

which is the abscissa of the intersection between the
two density functions, and thus defined by

f1(o12) — f2(o12)

It can be concluded that these regions may also be de-
fined as follows:

.3.
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Al contains all points of the space of T such that f 1( t ), f ,( t )
(8)

A2 contains all points of the apace of T such that f2(t) >r 1( t )

This maximum value of PS Will be denoted by RS and
called the reliability of the selootion.

Equs. (6) and (8) are valid. also in the more complicated
oases, when there are more than one intersection between the
density funotions, as illustrated in Fig.2, where A2 is oom—
posed of the two intervals A2a and k2b.

The extension to any finite number of hypotheses is tm-
mediate.

The reliability RS can be put in relation to the con-
cept of decision power 1W introduced in Soi.Rep.Nr.3 of
Contract F6]052—69—C—0029 t i ] and defined by

DI’ — 1 — Prob (El) — Prob(E2) — f(f 1(t) — f2(t)) d t (9)

where Prob(111) — the probability of rejeoting the true hypo-
thesis and Frob (E2) — the probability of accepting a false
hypothesis.

With the notations in Fig.3 we have for j — 3

PHl~~~i — o 1 P 1 1 2— l— b1— o 2 PH3 .l— b2

DP(i,2)— l— b 1— o 1 D?(2,3)~~i— b 2— o2

After some obvious calculations we arrive at

RS — (1+DP(l ,2)+DP(2,3))/3 (10)

The extension to any number of hypotheses is immediate.
If the arithmetic mean of the (i—i) 1W—values is denoted
by E(DP), then

RS — (1+(j—1)E(DP))/j (11)

—4...
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from which it can be concluded that with increasing j

RS .—~~~ E(DP) (12)

2.1.2 ~ iltjviri;~te Selectors

In accordance with the preceding argumentation it
follows that for niultivariate aeleotors we have

PHi — Jfj(tl,...,tk)dti •••dtk and RS — EPHi/j (13)

4~
.

where Al contains all points of the k—dimensional space
of ~ sat isfy ing the inequality

f.(t.,...,tk) > rh(tl,...,tk) (h~ i) (14)

2.2  An Infinite Number of Hypotheses

The preceding formulas will  now be extended to the
case of an inf~nito number of hypotheses, a problem whioh
arises, when we have to soleot the true value of an un-
known parameter e, which can take any value belonging to
a non—degenerate interval.

In this particular oase , the coordinates tl~••~~
tkof the soleotor are unique funotions t4 _ g~(x1,...,x~)

of the obsqrvations x,.
1

The study w 1 1  be started with the most simple Be—
leotor T — X ,., t~~~t is, -taking the sample point as the
test point A 

~ith~ut any transformations, which implies
t — x  and .~~; .

Let Hi be t~;e hypothesis that a is the true value
of the un~nown parameter ~~~

. The ~~~~~~ funotion will
th.n be given by

f
i

(h
i
, . .

~~~~
) — f(xl;uj)... f(XN;uI) 

(15)

2.2.1 t niva riat e  Selectors

If only one observation is available, then the density

—5—
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func t ions  becomes f (x; c1). N ow let the density functions
f(x;a — da) ,  f(x;ct) and f(x;a + da) be represented by the
graphs in Fig.4. Maximum reliability is attained only if
we ohoose the acceptance region Aa. (01,02), defined by

f(o1~ci—da )— f~~1;a) and f(o2~a)* t(o 2 ;a+ da ) (16)

For small da we ma~ put

f(o1;a—da ) — f (o1*u)—f’(c1;u)d.a

f(o2;a+du ) — f ( c 2 ; a ) + f ’ ( o 2 ; c r ) d a

where

f ’( x;a ) — a f(x;a )/ ~~~a (17)

from which it follows that

f ’ ( o 1;a) — f’(c2
;u) — f ’ (o ;u )  — 0 (18)

that is, when da ..—~‘-O , th en and 02 tend to the
same value o, which is the abcc~ssa of a point common
to f(x;u) and the envelop of the family of the density
functions, as indicated in Fig.4. This result implies
that the acceptance region (01,02) degenerates into the
point o and the selection rule becomes that, if we
have a single observation x1, then we Will select as the
true value of a the particular value ~~, which is given by

— 0 (19)

Observing that f(x;a) Is the likelihood ftznotion of
a sample ~ of size N — l , it follows that ~ is iden-
tical with the maximu m likelihood estimate , whloh thu s has
been proved to have maximum reliability in this particular case.

The selection rule (19) may also be put in the form

~~ln f(x1;2)/~~
a - 0 (20)

-6-

______________________ 
_ _ _

— —~——- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



_ . _—— —.. . ._
TJ~~~~~;_ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

—.---—-- -‘ —.-.----,-— — —-~ —‘- — —-- -. ~~~~~~~~~~~~~ ~~—.~~~~--~-— —‘ —~ —--,,~~--- -~~~~~ -_---_ __.~
_‘,‘---

~~~~

Let us now suppose that a can take a very large num-
ber of disorete, equidistant (distanoe — da) values u~.
As demonstrated in earlier publications, DP may theft be
replaced by the estimation power EP. The reliability of

Will then be given by

RS - ~~~P(u) ) da (21)

From (9) it may be derived that

EP(a) - j ’f’ (x;u) dx (22)

where the integration includes all points x with positive
values of 1’ , as indicated by the + sign.

Since EP(c c ) is a function of a , typical for each
value of a, the mean E(EP) may be replaced by an integral.
It will , however, be preferable, as being more informative,
to use the EP(a)—function itself as a measure of the reliabi—
lity of a seleotor, as will be illustrated in the sequel,

The question now arises whether it will be possible to
increase the reliability by Introducing a transformation

y — g(x) (23)

of the observations x.

Two necessary conditions will be imposed upon the
function g(x):

1) there must be a uniquely defined y correlated with each x.

2) no two of the transformed aooeptanoe regions may have com-
mon points.

Thesb two conditions are satisfied, if the funotion g(x)
defines a biunique mapping of the domain of y onto that of
x , which holds if g(x) is monotone, i.e. steadily Increasing
or steadily decreasing as x Increases , as illustrated in
Fig.4. If a is the true value, then the probability of so—
looting it is equal to the area of the shaded region, that is,
to the probability that a value x drawn from a distribution

—7—
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with the density function t’(x;a) fall s within the Interval
(c ,02). With  each much value there is alway s oorr.lated a
va’ue y which falls within the transformed acoeptanoc region
(g( o1) ,g( o .,)),  so it oan be concluded that RS ii invarian t
undef’ any ‘ acceptable transformation. Consequently no improve-
Inent of the reliability is possibl, by means of transfor-

mations of the observations.

2,2,2 Bivariate and Multivariate Selectors

Lot us now suppose that two observations are available,
Taking X

2 
as the selootor, the density function correspon-

ding to the hypothosie ~a1 
that is the true value of

a, will be given by

— f(x1;u 1) . f (x2;a1) (24)

Comparing three adjacent density funotions, as in the
preceding, corresponding to a—d a , a and a+da , it fol-
low. that , when da —4 0, the aooeptanoe region Au dege-
nerates into a curve in the x~,x..,—plane.~

The nnleotion rule then becomes that, If we have two
observations x and x2, then we will select as the true
value of ~ the particular value &~ , which satis-
fies the condItion

?(ln f(x1;~ )+ ln f(x2;~~)]/~~a.0 (25)

Tho extension to any number of observations is immediate,
being

+ f(x
N;~

)]/3u.O (26)

The selected vu luo is identical with the maxiuaun
likelihood estimate .

The estimation power F~P() will be given by

EP(L~) — f[ ?(f(xl;~)... f(xN;~
)/3a)dzl...dxN (27 )

where the integration is taken over all points with a positivo

~~~~~~ 
-
~~ 
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value of the partial derivative, as indicated by the + sign .

It can be proved that EP() is invariant under any ac-
ceptable transformation y — g(x1), of the observations, which
implies that no improvement of the reliability oan be made
in this way.

Let us now examine the effect of rearranging the elements
X
]~~~~

.sX

N 

of the sample in ascending order of magnitude, de-
noting them by X(l\,...,XrN~ 

and calling them the
order statistics in the ‘ 1sample~ 

/

The probability elcment of the joint distribution of an
arbitrary set of order statistics is given by Sarhan &
Greenberg [2]. In particular we have, if all order statistics
ar~ taken, the density function

(28)

which differs from the unarranged sample only by the factor
~~~~~. The selection rule, indicated by equ.(26), will thus
result in the same selected value a’.

The introduction of the order statistics has, however,
the advantage of making it possible to censor or truncate
the sample. We may even use a sin~1e order statistic of the
sample. The estimation power EP(à’) depends very much on the
order number, thus indicating where the information is located
within the sample.

The preceding general formulas will now be applied to the
Weibull distribution and further developed.

3. APPLICATION TO THE WEIBULL DISTRIBUTION

3.1 One Unknown Parameter

A single unknown parameter may be determined by means of
a single observation, as will now be demonstrated. The den-
sity function of the selector X1 is given by

f(x,m,Ø,~~)— (m/p) z
m_ 

~~~~ (29 ’

-9-
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where

z — ( x — ~)/p (30)

and

in — 1/u - the shape parameter
~~, ~ i — the scale and th. location parameter

Prom (29) we have

ln f(x) — ]nm— ln~ + (m—l) ln ~~~
_ (3))

3.1.1 The parameter .~~~~~ 1/rn Unknown, ~3 and )1 j~~own

From (31) it follows that

‘è ln f(x~~~a — — m 2 ‘Jin f(x) /~ m — -  m(l+ln sin _ $
in ] f l 5in

) (32)

Introducing
in au _ s  s — u  I

dx-a .~ .u~~~~ciu (33)

; f(x)~~. e~~~du J
we have

—~~‘bln f(x)/~~ - t(u)~~l + m u —  ~i.lnu (34)

Some values of the function t(u) are listed in Table 1.
We have t(ua) - t(ub) . 0 for

Ua — 0.25924 ~ u.0 — 2.23893

fence , if a single observation x is available, then it
follows from equ.(20) that the 1 selected value ~ is
given by

— 0.25924 or x1
2
— 2.23893

—10-
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or

l/
~i 

— a1
.— 1.70562 logx1 or l/in2.u2.2.85683 101

11 
(3 5)

Sinoe always a)O, the value is used, when x141,
and u2, when x

~ ~
1.

The estimation power of is from equ.(22) given by

- ~J’
) f(x)/�a) dx — f ( 

~ in f(x)/a ~)f(x) dx

t 4.
Thus

a.EP(~) — J (i+inu_ u.lnu)s~~ du (36)

Observing that

-u -u
d(u .lnu.o ). (l+ln u u .lnu)e du

it follows that

— /(u.lnu.e~
1 

— 0.46237 (37)

3.1.2 The Parameter ~ J~nknovm, a and Ithown

From (31) we have after some easy calculations

a.~3 ~ln(f(x)/ 0 — u— i  (38)

The selection rule then becomes -

u - ( (X ~~~~
_ /I)m _ l

or
(39)

The estimation power~~EP(~) is given by

a.~ .EP(0) — J (u_1)e du — 0,36788

EP(~) — O.36788/a.Ø (40)

—11—
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3.1.3 The Parameter j~ Unknown~ a and 0 Known

From (3].) we have after some easy calculations

a.p bln f(x)/?u. (u _ (l_a))/ua

The selected value will be given by

‘a - ((x1
_
~~)/O)

m _ 1— u

or

~ 
~~

_ ø (1_~~)a (42)

The estimation ~ow~r EP( ~?) is given by

a.p.EP(u) ,~
f’(l_a — ~~~~~ e ’adu (43)

for u— i

— 0.36788 for a— O

3,2 All Parameters Unknown

Maximum reliability is attained ~if we choose
as the selector. Its density function L is given

- - by equ (1). Introducing equ.(29) we have

L — Tt m (x~
_ ~)

m_ 1 _ (xj~~a)in/O
in
,p

m

‘‘ I
A A A

The selected values in, ~i and. ~3 are obtained, by equating
to zero the partial derivatives, that is, by solving the
system of equat ions

.0 and )L/~~~ . 0 (45)

From the last equation the value ~ will be given by

~~~Tfl 
- E(x1— ~)in/N (46)

Introducing (46) into (44) and neglecting factors depending
on N only, we arrive at

—12...

L ~~~~~~~~~~~ ~~~~~
- 

- •  

- 

~~~~~~~~~~~~~~~~~~~~~~



~ — — - —-—-- — - . ‘ - - —
~~~ 

— ,_ - ~ a— = ~~~~~~ — 
— -

~ 
-
~ 

— - -~
----

~~~~~~
.- 

- 

~-_ -

L - it m(x1- ~i)~~~ /Z(x~- ~a)
m (47)

“I

In the particular case when ~~~- 0 we have
t’d

L - it in .  — 1
I~~~

m 
(~~~~~~)

“I

Instead of solving the system of equs.(45), it has been found
convenient to compute L in •qu.(47) for a properly chosen

~et of in and au—values and to select the particular pairin , ~ which maximizes L.

To this purpose the computer program 6/73 has been writ-
ten and applied to a large number of samples of fatigue teat
data collected at the Boeing Company , as will be reported
elsewhere.

The oomputin~ time for a complete evaluation of such
samples of size N. 10 is only about one second.
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Figure 3. Selection of ckte of Three Hypotheses.
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TABLE 1. THE FUNCTION t (u)  — 1 + m u  — u.lnu (u —

‘a t(u) u t(u) ‘a t(~) u t(u)

.00 —~~~~~ 0.0 —~~~~~ 1.0 1.00000 2.0 0.30685

.01 —3.55912 0.1 —1.07233 1.1 0.99047 2.1 0.18387

.02 —2.83378 0.2 —0.28754 1.2 0.96354 2.2 0.05385

.03 —2.40136 0.3 0.15722 1.3 0.92129 2.3 —0.08276

.04 —2.09012 0.4 0.45023 1.4 0.86541 2.4 —0.18483

.05 —1.84594 0.5 0.65253 1.5 0.79727 2.5 —0.37912

.06 —1.64461 0.6 0.77567 1.6 0.71800 2.6 —0.52883

.07 —1.47311 0,7 0.89300 1.7 0.62856 2.7 —0.68854

.08 —1 .32363 0.8 0.95537 1.8 0.52977 2 .8 —0.85838

.09 —1.19125 0.9 O.9~946 1,9 0.42233 2.9 —0.94404

.10 —1.07233 1.0 1.00000 2.0 0.30685 3.0 —1.19722

t(u).o for u
~~~

O 2S924 and u,0 m2.23893
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